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A method is suggested for derivation of the Bethe ansatz equations for the six- 
vertex model on a square lattice rotated at an arbitrary angle with respect to the 
coordinate axes. The method is based on the random walk representation for 
configurations of the model. The equations for the ice model on the rotated 
lattice are derived and some numerical results are obtained. 
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1. I N T R O D U C T I O N  

In this paper we develop some methods of solution of the six-vertex model 
with various boundary conditions. Our aim is to apply the random-walk 
formalism to derive the Bethe ansatz equations for a lattice rotated through 
an arbitrary angle with respect to its "natural" orientation. 

The original approach by Lieb (~1 used the transfer matrix method for 
a square lattice wrapped in a torus along rows and columns of the lattice. 
Temperley and Lieb (2/ considered the ice rule models on a square lattice 
drawn diagonally and found that this geometry is more convenient for 
comparison of the one-dimensional quantum and two-dimensional vertex 
models. (3~ Pegg (4) used techniques outlined in ref. 3 to show how the six- 
vertex model can be solved with a diagonal-to-diagonal transfer matrix. 

Whereas the Bethe ansatz equations for these basic orientations have 
been well investigated, almost nothing is known for other orientations. The 
rotation of a lattice induces some complication of boundary conditions. 
These are considered for the following reasons. 
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Let us draw a rotated square lattice on a strip of width M and con- 
sider an ice-type model with two types of boundaries: open edges and glued 
ones which transform the strip into a cylinder. Each bond can accept one 
of two states characterized by arrows. Besides the ice rule for inner sites, 
one usually assumes reflecting conditions for the boundary sites in the case 
of open edges: at each boundary site there is one arrow in and one arrow 
out.  

Instead of arrow configurations, one often considers a line representa- 
tion, drawing a line on a bond if a corresponding arrow points down, 
otherwise leaving the bond empty. Typical arrangements of lines for the 
angle of rotation ~ = ~/4 are shown in Fig. 1. A comparison between 
Figs. la and lb shows that reflecting conditions force the lines to have an 
average orientation along the strip which reduces the entropy if the angle 
of rotation differs from r~/4. In the limit M ~ oe for periodic conditions we 
expect the free energy fM to tend to a known value f ~  independent of the 
angle of rotation e. On the contrary, in the case of an open strip with 
reflecting conditions one should obtain a limit value f(c~) which varies with 
c~ from f ~  at e = zc/4 to its trivial value at c~ = 0 when all lines becomes 
straight and parallel to the vertical axis. 

Although the qualitative behavior of the free energy is clear, investiga- 
tion of its analytic form needs the solution of the Bethe ansatz equations 
for all ~. Note that the situation here is drastically different from those in 
Ising-type models, where the equivalence of open and periodic boundary 
conditions as well as various periodic conditions in the thermodynamic 
limit follows from the Van Hove theorem. The difficulties in proving the 
equivalence of various boundary conditions in the case of the six-vertex 
model are discussed in the thorough review in ref. 3. 

lat 

Fig. 1. Typical arrangements of lines representing the ice model on the strip: (a) reflection 
boundary condition; (b) periodic boundary condition. 
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More important problems arise when considering finite-size effects 
in this model. It is known (5) that for a conformal-invariant model with 
periodic boundary conditions the free energy per site is 

1 ~ C fM=fo~ M2 ~ +h ighe ro rde r t e rms  (1) 

where C is the central charge of the Virasoro algebra. De Vega and 
Karowski ~6) used Eq. (1) to obtain C from 1/M 2 corrections in the case of 
the normal orientation of the lattice. For a lattice of finite width 34, the 
angular dependence of fM to be expected even for periodic conditions calls 
for an investigation of correction terms in the case of arbitrary orientations. 
The proof of the independence of 1/M 2 corrections of the lattice orienta- 
tion would be an argument for the rotation invariance of the six-vertex 
model, which is not yet proved by a direct calculation of correlation 
functions. 

Also, if one introduces the transfer matrix along the strip with 
e x p ( - a l l ) ,  where a is a properly chosen lattice spacing,/~ may be thought 
of as the Hamiltonian operator of a quantum field theory in (1 + 1) dimen- 
sion. So, the six-vertex model on rotated lattices generates a variety of 
(1 + 1) field theories parametrized by the angle of rotation. 

In this paper we are concerned with the six-vertex model solely for 
periodic boundary conditions. We will use the line representation, 
considering each arrow configuration as a set of random walks restricted 
by the ice rule. Our aim is to express the number of these configurations 
by generating functions of simple unrestricted random walks. It appears 
that this program is completely equivalent to the Bethe ansatz approach, 
with the exception of using a transfer matrix which may be of a very com- 
plicated form for an arbitrary angle of rotation. 

In Section 2 we formulate the problem and consider a single random 
walk on a square lattice embedded on the surface of a cylinder and rotated 
with respect to the cylindrical axis. In Section 3 the Bethe ansatz equations 
for this model are derived. In Section 4 the known results are obtained 
from these equations. In Section 5 some numerical results for the ice model 
on the rotated lattice are presented. 

2. S INGLE R A N D O M  WALK ON ROTATED LATTICE 

Let us start by considering an auxiliary square lattice A~ = ~x x 
wrapped on a cylinder along the columns of ~ .  Let us draw on 5~ the 
basic lattice L with the translation vectors (al, a2) and (a2, - a l )  , where 
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Fig. 2. The auxiliary lattice ~ (thin lines) and the basic lattice L (bold lines) with the 
translation vectors (1, 3) and (3, - 1 ) .  

al ,  a2 are integers and a2>  a 1 for definiteness. In Fig. 2 the case a 1 = !, 
a 2 = 3 is shown. 

To get periodic boundary conditions on L, we require the number of 
columns 5r x to be divisible by (a 2 + a22). Each bond of L is provided by an 
arrow so as to obey the ice rule: there are always two arrows pointing 
away and two pointing into each site of L. The six possible states of 
vertices are shown in Fig. 3. Let { ( i ) =  1, 2,..., 6 be an index of the vertex 
configuration at the ith site of L and ~o~=exp(-f le~)  be the Boltzmann 
weight of a vertex having energy ~; /~  is the inverse temperature. The 
problem consists in determining the partition function 

Z =  Z ~ co~{,) (2) 
G i c L  

where the sum runs over all possible arrow configurations G on the 
lattice L. 

To formulate the problem in terms of restricted random walks, we 
identify an arrow pointing down with a segment of a walk. The configura- 
tion of the model is represented by n walks oriented along the cylinder axis 
and not intersecting each other. Due to the ice rule, two walks are able to 
have sites of contact on L, but are not bonds. The ice rule provides also 

)< 

Fig. 3. The ice-rule arrow configurations and the line representation. 
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the conservation of the number of walks n at each cross section of the 
cylinder. 

As usual, we begin an enumeration of possible configurations of the 
model with the case n = 1. This case corresponds obviously to a single 
unrestricted random walk on the lattice L. It is convenient, however, to 
describe this random walk in terms of the auxiliary lattice •.  Consider an 
arbitrary walk starting from an upper row of 5f and ending at a lower one. 
We identify the number  of a row with discrete time t (0 ~< t ~< ~ ) .  Denote 
the coordinate of a site of L on the upper row of 2 ~ by x 0. 

Let w~t(x) and w~(x) be weighted sums of walks starting at Xo and ter- 
minating at x at a moment  t from the left and from the right, respectively. 
The weight ascribed to each walk is determined by the weights of the line 
configurations at all sites passed by the walk. Bearing in mind that the 
walks go along bonds of L and each site of L not passed by the walk has 
the weight 091., we write the recurrence equations 

wlt(x) 093 ] 095 f~_a l (  x -- a2) = - -  W t ~l( x -  a2) q- 
09t 091 

096 l a/x§ J ; Wt(X) . ~ . - - W t _  
091 091 

(3) 

We are interested only in random walks on the lattice L; therefore we may 
put w~(x) = wt,(x) = 0 for all sites (x, t) e 2 ~ not coinciding with sites of L. 
Defining the generating functions 

w~(x) = ~ w~(x)z',  ~ = l, r (4) 
t=O 

we obtain from Eqs. (3) and (4) 

095 
W ' ( X )  = 093 z a l w , (  x - -  a2) + - -  ZalWr(X -- a2) 

091 091 

(d) 4 Wr(X) = 096 Zazwl(X + al ) + _ _  za214)r( x ~_ a l  ) 
091 091 

(5) 

It is necessary to distinguish two solutions of Eq. (5) corresponding to 
different initial conditions: 

(a) 
by v~(x). 

(b) 
by v~(x). 

The first step is left: Wto(X)= 6xxo, W~o(X)= 0; denote the solution 

The first step is right: Wo(X ) = 6xxo, Wto(X) = 0; denote the solution 
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yields 

where 

A discrete Fourier transformation 

~x 
w~(k) = ~ w~(x)e ikx, 

x ~ I 

1 - -  c~ z ~ e zka2 

0)1 

__ 0")6 za2e ikal 
0)1 

for initial conditions (a) and 

for (b). Defining 

A = det 

~---l~ ?' 

zat eika2 
0)1 

1 0)4 \ w r ( k ) ]  -- - -  Z a2 e - ikal 
0), j 

'o=(eT) 

1 - 0)3 zalei~2 
0)1 

- -  0")6 za2e ikal 
(D 1 

we obtain the solutions of Eq. (7) 

and 

Zal ezka2 
0) 1 

1 ~ 
- -  - -  za2 e tkal 

0)1 J 

~ l ( k ) =  A - l e i k X o ( 1  0 ) 4 z a 2  e ( 2 ) 1  lkal) 

l~r(k) = A le'kX~ c0-'~6 za2e ikaL 
0)1 

wl(k ) = A -leZkX~ m s  z,l~ e,k,  2 
0)1 

wr(k) = d lei*Xo (1 0)3 " ) 
_ _ _  zal etka2 

(I)1 

(6) 

= Io (7) 

(8) 

(9a) 

(9b) 
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On the basis of definitions (4) and (6) we have 

l dz 
w?(k) = 2~i J ~ w~(k) '  ~ = l, r (10) 

The path of integration in Eq. (10) is a circle of radius r < Izo(k)l, where 
zo(k)  is a root minimal in absolute value of the equation 

A = 0  (11) 

Using Eqs. (9a), (9b), and (10) and introducing 2, = z- l (k) ,  we obtain 

~(k )  = ~',(~) + ~;(k) 

= e  2 k }~k_(D4e ika,_~_(D6 e ikal. (12a) 
\ CO 1 091 J 

and 

#,(k) = ~',(k) + #~(k) 

= e  ,*xo )4,t+~-al(~ Z, C01 CO~ (12b) 

Here "~k can be interpreted as an eigenvalue of a transfer matix T 
coupling two states of adjacent rows of 5(' with an eigenfunction e ikX. The 
action of the matrix T on a coordinate function of type e ikX can be 
described as follows. 

Consider a walker at a site of L. The matrix T moves it in one or 
another direction along the bond of L down to crossing the next row of 5~. 
The movement continues until reaching the next site of L. Then the 
coordinate function is multiplied by e -~ka~ or e ika~ and by coUcol, depending 
on the line configuration at the given site. 

We do not use, however, the explicit form of the transfer matrix T, 
and later it is important merely that w, (k )  is actually the generating 
function of all unrestricted t-step walks with the weights e ~k,~ and e ~2 
ascribed to the left and to the right step along the bonds of the lattice L 
and with the weights cor ascribed to each site of L passed by a walk. 

From Eqs. (12a) and (12b) we get the leading asymptotics of ~,(k) 
and w,(k) as t ~ oc: 

w~(k) ~ 2 k (13) 

We also define a "phase" factor ~b(k): 

�9 ,_a~(k) =~(k)#,_a2(k) (14) 
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which due to Eqs. (12a) and (12b) has the form 

2~k 2 + e - ' ~ ' ( c o 6  _ (/)4)/(/) 1 
~)(k)  = "al + ezka2((D5 _ (.03)/(2)1 ( 1 5 )  ,4 k 

3. T H E  B E T H E  A N S A T Z  

We consider now n walks described by the generating functions w,(kl), 
wt(k2),... , wt(kn) with the "wave numbers" kl ,  k2 ..... k n. Following the Bethe 
ansatz prescription, we define a sum with certain coefficients a(p): 

Z t = y, a(p)  w,(kp(~l) wt(kp(2))"" mt(kp(n) ) (16) 
P 

over n! permutations of n numbers 1, 2,..., n: p(1), p(2) ..... p(n). The goal is 
to choose a complex-valued function a(p)  so that the contributions from 
all configurations of n walks not satisfying the ice rule cancel out. Then 

Zt = E a(p) Ft(kp(1) ..... kp(,)) (17) 
P 

where Ft(kp(1) ..... kp(n) ) is a weighted sum over all configurations of n walks 
restricted by the ice rule. The walks in Ft are nonintersecting, ordered [i.e., 
labeled by p(1), p(2) ..... p(n)]  and orientated along the cylinder axis. 

Let us now assume that {k) is a symmetric set: 

k j = - k n  j+l,  j = l , 2  ..... n (18) 

and that the lattice is wrapped in a torus. Then each walk becomes closed. 
In this case 

Z ~. = Fas.(0, 0 ..... 0) ~ a(p) (19) 
P 

because the total weight of closed walks originating from the factors 
e x p ( - i k a l )  and exp(ika2) is exp[mSfx(kl+ ... + k n ) ]  where m is the 
number of synchronous rotations of restricted walks around the vertical 
axis. Due to (18), this factor equals unity. 

The function on the right-hand side of (19) is just what we want to 
find. By the definition of the partition function (2) we have 

z = 0 ..... 0 )  (20)  
n 

where ILl is the total number of sites of the lattice L and the summation 
runs over all possible numbers of walks n. 
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The additional factor ~_,p a(p) in (19) does not play any role in the 
limit of a very long cylinder or torus because, as we will show below, a(p) 
is a bounded functions of kl,..., k ,  not depending on 5~y, which yields 

1 lim a(p) = 1 (21) 

From Eqs. (13) and (16) we have 

Z~y~Af~" (22) 

where 

A~ = 2k~ 2k2 �9 " �9 2k~ (23) 

Thus, on the basis of Eqs. (18)-(23) we may write for large 

Z 1~ILl t(DILIz ]I/ILI=(DI(An) (a~+a~)/~x (24) 
= ~ I ~I~ 

where the number  of walks n is chosen such that the corresponding eigen- 
value is maximal, and the identity ILl = 5~x~/(a 2 + a~) has been used. 

Now, we have to find values of kl ,  k2,...,kn which obey (18) and a(p) 
for which the walk configurations not satisfying the ice rule will cancel out. 
It is sufficient to write the cancellation conditions of the forbidden 
configurations at each site of L. 

3.1.  T h e  C a n c e l l a t i o n  C o n d i t i o n s  

Consider two walks with wave numbers p and q passing through a 
certain site of L. Let P and Q be two permutations of {k} in which p and 
q change the positions: P{k} . . . .  p, q .... and Q{k} . . . .  q, p ..... In Fig. 4 
four possible configurations of walks corresponding to the first permuta- 
tion are shown. For another permutation one must change the positions of 

Fig. 4. 

P 9 P q p q p q 

/ 

2. 2. 2_ 2 

I~I (B) (c~ Cdl 

Four possible walk configurations at a site. Cases (a)-(c) must be eliminated; case 
(d) is described in the text. 
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p and q. Numbers 1, 2, 3 denote the sites of L. The segments of walks 1 2 
and 1-3 are determined. The wavy lines denote a continuation of the 
unrestricted random walks. 

According to the definitions of Section 2, the weighted sum over all 
t-step walks from site 1 in the case of Fig. 4a is 

6 0 3 6 0 5  �9 ' 
2 e'Pa2e'qazl~t at(P) Yv~_,,(q) ( 2 5 )  

~ 

for Fig. 4b is 

and for Fig. 4c is 

6 0 4 0 )  6 . ~ 
60~ e zPale--~qalWt_a2(p ) ~vt_o2(q ) (26) 

603604 e,PO2e_iqa~ ~vt_ ~2(q) ~, a~(P) (27) 

The cases of Figs. 4 a ~ c  do not satisfy the ice rule, so they must be 
elimiated. The case of Fig. 4d corresponds both to a "real collision" 
satisfying the ice rule and an "imaginary collision" associated with free ran- 
dom walks. So, we have to eliminate the weighted sum 

0 )  5 ( ,06  - -  (L) 1 (J) 2 . . ~ 
2 e-'pale*qa2ff; t a2(p) Yv,_a,(q) ( 2 8 )  

(1) 1 

Let A(P) and A(Q) be the weight factors of two walks at site 1 
multiplied by the coefficients a(P)  and a(Q). Using Eqs. (25)-(28) and 
(15), we can write the cancellation conditions at site 1 as 

A([p )[604606e-,pm- iqat _]_ 603605eipaz+ iqazO(p) cb(q) 

+ 603604e-iq~l+iP~2()(P) + (605606 - co1602)e jp~ +'qo~q~(q)] 

= A(Q){604606e-ipo1-tq~+ 603605eipo2+~qa2e~(p) c~(q) 

+co3604e-iq~+iq~2fb(q)+(605606-601602)e-~q~+iP~'2~b(p)} (29) 

Defining the function B(p, q) by the identity 

A(P) = B(p, q) A(Q) (30) 

we get 

B(p, q) = - [cn4606 + 603605e i~p+q)(a~ +~2)O(p) ~b(q) 

+ 603604eiq(a, + a z ) q ~ ( q )  q_ ( ( ' 0 5 0 ) 6  - -  601  0)2) eip(al + ~ 2 ) q ~ ( p ) ]  

x [604606 + 603605e i(p +q)~o~ + ~2)~b(P) ~b(q) 

+cn3604eiP(~+o2~fb(p)+(605606_601602)eiq(o~+a2)()(q) -] 1 (31) 
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Following the trajectories of walkers from the top row to the bottom one, 
we note that the forbidden configurations appear as a result of the collision 
of exactly two walkers at a site. Canceling these configurations sub- 
sequently, we satisfy the ice rule for all trajectories on the whole lattice. 

For the ice model (co~ = ~o 2 . . . . .  co 6 = 1), Eq. (31) becomes 

B( p, q) = - 1 + e '(p + q~("~ + ~l(;tpXq) ~2- ~' + e iq(u~ + az) 2az a~ 
q (32) 

1 q- e i( p + q)(al + a2)(,~,p ,~q)a2 -- al AV e ip (a l  + a2) 2;2 al 

where )ok is the maximal root of the equation 

t~ a2 c i k a l  - -  )~ka2--al c i k (  al + a2) - -  1 ~ -  0 (33) 

3.2. The Boundary Conditions 

Let us consider the weight factors A(P) and A(Q) in more detail. 
Denote by Xo and x0 + ~ the initial positions of two walkers with wave 
numbers p and q. Let x be the coordinate of a site where the walkers 
collide. Then the weight factor at the point x for the permutation P has the 
form 

A ( P ) =  a ( [ p ) e i p ( x - X ~  i q ( x - x ~  ~),Q(~) (34) 

and for the permutation Q 

A(Q) = a ( Q ) e  iq~-  X~ x~ ~s162 (35) 

where f2(~or is the Boltzmann weight of the walks. Substituting Eqs. (34) 
and (35) into Eq. (30), we obtain 

a(P) = a(Q) B ( p ,  q )e  ie(q-p) (36) 

Let further x o, x2,... , o  x,~ be the initial positions of the walkers with wave 
numbers kl,  k2,..., k, in the permutation P. Denote the difference x~ 1 - x ~ 
by 6j.j+l. The cyclic permutation Q = {2, 3 ..... n, 1} gives the coefficient 
a(Q) associated with a(P) by 

a ( P ) = a ( Q )  I~I B(k l , k j )e i~ , ,2 (k2-k ,~ . . . e  ~. ~,,(k,,-k,) (37) 
d = 2  

On the other hand, the relative positions of the walkers in P and Q 
coincide. So, we must satisfy the identity a ( P ) =  a(Q). Then, we get 

e,a,.2~k,-kz) . . .  ei~, ,..~k~--k.) = H B ( k l ,  k;) (38) 
j=2 
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Noting that Y~=, (~j,j+l =~ one can represent the left-hand side of 
Eq. (38) as 

(39) 
where 

@({k})=  I I  e x p ( - @ , j + i k j )  (40) 
j = l  

In principle, one should try to prove that in the thermodynamic limit 
Lz x --, oo, n ~ oo ( n / S ~ =  const), ~({k})--* 1 under sufficiently general con- 
ditions. However, it is easier to choose all 6j, j+l  to be equal to each other. 
Then the identity 

N ( { k } ) =  1 (41) 

is fulfilled for any symmetrical set {k} in (18). It is not necessary to 
associate the special choice of 6j, j+l  with the real initial positions of walks, 
because one can always ascribe an arbitrary initial factor to the weight of 
a walk. Using Eq. (41), we may rewrite Eq. (38) in the form 

e'kJ-~x= (1 B(kj ,  k~) (42) 
ir  

The system of n equations (42) with Eqs. (11) and (31) is a generalization 
of the Bethe ansatz to the six-vertex model on a rotated square lattice. 

4. C O M P A R I S O N  WITH K N O W N  RESULTS 

The Bethe ansatz equations for the six-vertex model were obtained in 
two particular cases: for the "natural" lattice orientation (1) and for the 
lattice rotated through the angle ~/4. 

We begin with the second case. It corresponds to al = a2 = 1. Sub- 
stituting these values into Eq. (8) and solving Eq. (11), we obtain 

z [  1 = 2k = 0)---23 eik + 096 e -ig~k) (43) 
0)1 (-01 

where g(k)  is defined by the identity 

093 elk "4- 096 e-ig ~--- 0)4 e- ik  "}- (.05 eig (44) 

Using Eqs. (15) and (31) with (43) and (44), we get 

B(p,q)= 0)40)6-}-0)30)4Tq-}-0)30)sTpTq-1-(0)50)6-~176 (45) 
094(/) 6 -~- (D3fD 4 Tp -4- 0)3605 Zp Tq 4- (0)5 (D 6 - -  0 )10)2)  Tq 



Six-Vertex Model 319 

where Tk = exp{ i [k  + g(k)]  }. Denote the number  of sites in a row of L by 
N. Then ~ = 2N, and Eqs. (42) have the form 

e2iUk~ = (-I B ( k j ,  k~) (46) 

Expressions (44)-(46) coincide with the ones obtained by Pegg. (4> 
The natural lattice orientation corresponds to the limit a2 -~ 0% a~ = 1. 

So, putting e = ka2 and 2 ~ -  ,~2 - z  k, we get from Eqs. (8), (11), and (15) 

ba - ei~(b2 - c 2) 
2~= a - b e  i~ (47) 

r 

~b(~)- a - be i~ (48) 

where a = 0) 1 = e)2, b = (03 = (/)4, c = ( 0  5 = 0) 6. Equation (31) becomes 

1 + e i(~+~) - 2 A e  ~ 
B(c~, f l )=  1 + e ~ l ~ + ~ ) - 2 A #  B (49) 

with e = p a 2 ,  fl = qa2,  A = (a 2 + b 2 - -  c2)/2ab.  Noting that N = ~ x / a 2 ,  we 
get a system of equations for the wave numbers cq, cq,..., ~n : 

e'N~J = -- [ I  B(OCj, C~,) (50) 
i c y  

Equations (49) and (50) are the standard Bethe ansatz equations of the 
six-vertex model. (1~ The partition function per row can be obtained from 
Eqs. (22)-(24): 

(I (Sl) 
j = l  

This formula differs from the known expression 13~ by a term which vanishes 
in the thermodynamic limit. 

5. N U M E R I C A L  R E S U L T S  A N D  C O N C L U S I O N  

Investigation of the obtained equations with an arbitrary angle of 
rotation requires numerical calculations. 

We shall consider equations for the ice model on the rotated lattice 
given by Eqs. (32), (33), and (42). The simplest case which is far from the 
known results is al = 1, a2 = 2. In this case Eq. (33) gives 

(1 + sk) (52) 

822/60/3-4-3 
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where Sk = (1 + 4e 5ik)1/2. Equation (32) becomes 

3 - -  S k, + S k + S k S k, B(K, k ' ) =  - (53) 
3 - S~ + Sk, + S~Sk, 

As usual, for large n, Eq. (42) becomes an integral equation for the wave- 
number density p(k) 

Q t : aO(k, k ) . . . .  
2Top(k) = 1 + J - o  - ~  pttc ) dk' (54) 

where the function O(k, k') is defined by 

B(k, k')= - e  io(k,k') (55) 

and an interval ( - Q ,  Q) is defined by the normalization condition 

f 
Q n 

p ( k ) d k = - -  (56) 
- o  LPx 

One can deduce from Eqs. (53) and (55) t.hat 

aO(k, - k ' )  aO(k, k') 
Im - - I m  - -  (57) 

Ok 0k 

and 

Re #O(k, - k ' ) =  Re O0(k, k') (58) 
Ok Ok 

Then Eq. (54) becomes 

2rip(k) = 1 + Re f~ - O0(k,k') p(k')dk' (59) 
Ok 

and gives a real, symmetric, positive solution p(k). In the case of al = 1, 
a2 = 2 we have to choose n/~x = 3/10, which corresponds to the density of 
walks providing the maximum of entropy. Figure 5 displays the spectrum 

o.5 

-~/5 ~ w/3 -~  

tot) tgl 

Fig. 5. The density function p(k) for the cases of (a) a l = l ,  a2=oo;  (b) a l = a 2 = l ;  
(C)  a 1 = 1, a 2 = 2 .  
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Fig. 6. 

" i 0  

0.25 

IO ~7 

The curves of Fig. 5 in units of the Fermi momentum. 

o f k  for the cases (a) a I = 1, a 2 =  o0; (b) al = a 2  = 1; and (c) al = 1, a 2 = 2 .  
In Fig. 6 we plot the same curves in units of the Fermi momentum.  We see 
that the curves differ little from each other, and curve (c) lies between the 
limiting curves (a) and (b). As expected, all three cases of  the lattice 
orientat ion give the same value of  the ent ropy per site S = 23- in 4.(11 

In conclusion, we have obtained the Bethe ansatz equations for the 
six-vertex model  on the lattice rotated through an arbitrary angle. In terms 
of r andom walks, these equations represent cancellation conditions of the 
forbidden trajectories. The visualizability and relative simplicity of this 
method make us hope that the six-vertex model  can be solved on an open 
strip, and further information can thus be obtained about  thermodynamic  
properties of this model. 
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